Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Document Type
Year range
2.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.05.13.20100636

ABSTRACT

Identification of immunogenic targets of SARS-CoV-2 is crucial for monitoring of antiviral immunity and vaccine design. Currently, mainly anti-spike (S)-protein adaptive immunity is investigated. However, also the nucleocapsid (N)- and membrane (M)-proteins should be considered as diagnostic and prophylactic targets. The aim of our study was to explore and compare the immunogenicity of SARS-CoV-2 S-, M- and N-proteins in context of different COVID-19 manifestations. Analyzing a cohort of COVID-19 patients with moderate, severe, and critical disease severity, we show that overlapping peptide pools (OPP) of all three proteins can activate SARS-CoV-2-reactive T-cells with a stronger response of CD4+ compared to CD8+ T-cells. Although interindividual variations for the three proteins were observed, M-protein induced the highest frequencies of CD4+ T-cells, suggesting its relevance as diagnostic and vaccination target. Importantly, patients with critical COVID-19 demonstrated the strongest T-cell response, including the highest frequencies of cytokine-producing bi- and trifunctional T-cells, for all three proteins. Although the higher magnitude and superior functionality of SARS-CoV-2-reactive T-cells in critical patients can also be a result of a stronger immunogenicity provided by severe infection, it disproves the hypothesis of insufficient SARS-CoV-2-reactive immunity in critical COVID-19. To this end, activation of effector T-cells with differentiated memory phenotype found in our study could cause hyper-reactive response in critical cases leading to immunopathogenesis. Conclusively, since the S-, M-, and N-proteins induce T-cell responses with individual differences, all three proteins should be evaluated for diagnostics and therapeutic strategies to avoid underestimation of cellular immunity and to deepen our understanding of COVID-19 immunity.


Subject(s)
COVID-19
3.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.04.28.20083089

ABSTRACT

Background: The efficacy of the humoral and cellular immunity determines the outcome of viral infections. An appropriate immune response mediates protection, whereas an overwhelming immune response has been associated with immune-mediated pathogenesis in viral infections. The current study explored the general and SARS-CoV-2 specific cellular and humoral immune status in patients with different COVID-19 severities. Methods: In this prospective study, we included 53 patients with moderate, severe, and critical COVID-19 manifestations comparing their quantitative, phenotypic, and functional characteristics of circulating immune cells, SARS-CoV-2 antigen specific T-cells, and humoral immunity. Results: Significantly diminished frequencies of CD8+T-cells, CD4+ and CD8+T-cell subsets with activated differentiated memory/effector phenotype and migratory capacity were found in circulation in patients with severe and/or critical COVID-19 as compared to patients with moderate disease. Importantly, the improvement of the clinical courses from severe to moderate was accompanied by an improvement in the T-cell subset alterations. Furthermore, we surprisingly observed a detectable SARS-CoV-2-reactive T-cell response in all three groups after stimulation with SARS-CoV-2 S-protein overlapping peptide pool already at the first visit. Of note, patients with a critical COVID-19 demonstrated a stronger response of SARS-CoV-2-reactive T-cells producing Th1 associated inflammatory cytokines. Furthermore, clear correlation between antibody titers and SARS-CoV-2-reactive CD4+ frequencies underscore the role of specific immunity in disease progression. Conclusion: Our data demonstrate that depletion of activated memory phenotype circulating T-cells and a strong SARS-CoV-2-specific cellular and humoral immunity are associated with COVID-19 disease severity. This counter-intuitive finding may have important implications for diagnostic, therapeutic and prophylactic COVID-19 management.


Subject(s)
COVID-19 , Virus Diseases
SELECTION OF CITATIONS
SEARCH DETAIL